기본 콘텐츠로 건너뛰기

3D 프린터로 효시 만들고 실험발시 해보기 (Making whistle arrow & shoting)

2011년에 출전했던 세계민족궁 대축전에서 본 몽골의 효시는 매우 이색적이었습니다.
큰 휘파람소리를 내며 날아가는 모습에, 하나 가지고픈 소유욕이 생겼지요.

하지만 몽골 전통식 뼈로 제작된 것은 가격이 비싸서, 플라스틱 구슬과 탁구공으로 수제 효시를 제작해보았습니다.

1. 플라스틱 구슬 제작 : 화살에 끼우고 손으로 휘둘렀을 때 작은 호루라기 소리가 났으나, 활에 걸어서 발사하니 전혀 소리가 나지 않음.

2. 탁구공 제작 : 날카롭고 높은 소리가 났으나, 정확한 비율을 잡지 못한 상태로 제작한 결과 탄도안정성이 엉망. (미사일을 회피기동하는 전투기..처럼 화살 궤도가 불규칙하게 꺾임)


3D Printer로 제작하면 더욱 정확히 align을 맞출 수 있지않을까? 라는 생각에 시도해보게 되었습니다.
마침 thingiverse에도 whistle arrow라는 이름으로 여러종류의 모델이 올라와 있어서, 그 모델들과 제가 제작한 모델을 하나씩 테스트해보았습니다.


------------사용한 장비 ----------------

출력 : Cubicon ABS nozzle 235℃, bed 110℃

시험발시 : 개량국궁 54파운드 / 개량화살 2자 7치, 7돈




1. 피리형 효시
 출처 : https://www.thingiverse.com/thing:1171287
 출력 특이사항 : 길이가 너무 길어서 길이를 줄인 형태로 출력.


발시 결과 전혀 소리가 나지 않음. 길이를 줄인 것이 원인일지도..




2. 서양식 효시
 출처 : https://www.thingiverse.com/thing:27728
 출력 특이사항 : 서양식 화살촉에 연결하는 나사산을 빼버리고 화살대가 들어갈 수 있도록 홈으로 개조.

매우 날카로운 소리가 미약하게 들리는 수준.
특이사항으로, 화살촉에 부착하는 특성상 굉장히 파손이 잘 됨.
다른 디자인에 비해 공기저항이 매우 적어, 실제 화살의 사거리와 유사한 사거리를 가짐.


3. 부착식 효시
 출처 : https://www.thingiverse.com/thing:1626416
 출력 특이사항 : 원본 그대로 샤프트 파이만 수정.

화살 주위가 비대칭이라 탄도 안정성이 엉망일 것 같다는 예측과는 달리 매우 곧게 잘 날아갔으며, 사거리도 10% 가량 감소한 수준.



4. 부착식 효시 수정본
 출처 : -
 출력 특이사항 : 3을 대칭형으로 만들어 본 형태


어... 왜 소리가 안나지? 3에 비해 소리가 3배는 커질거라고 예상했는데...




4. 기존 탁구공으로 제작했던 형태
 출처 : 직접 제작
 출력 특이사항 :


가장 좋은 음색을 내는 형태. 탄도 안정성 양호하며, 사거리는 20% 가량 짧아짐.

5. 4형태의 수정버전
 출처 : 직접 제작
 출력 특이사항 : 4에 비해 크기를 2배 키우고, 측면 구멍을 삼각형으로 120도 3개 배치



4대비하여 훨씬 낮고 묵직한 음색이 나며,
탄도 안정성 양호함.
사거리는 30% 이상 감소.






댓글

이 블로그의 인기 게시물

3D Printer Ender-3 막힌 노즐nozzle 뚫기

구매하여 가지고 논지 얼마 되지 않았음에도, 갑작스러운 고장이 찾아왔습니다. 어느순간부터, 출력물 측면 상태가 압출량이 부족한게 아닌가? 라는 생각이 드는 현상이 보이다가, 급기야 익스트루더가 필라멘트를 제대로 밀어주지 못하고 뒤로 튕기는 현상이 발생하였습니다. 3D 프린터를 다루시던 분은 한 번 쯤은 경험이 있지싶네요. 익스트루더가 '딱~! 딱~!'하며 주기적으로 뒤로 튕기는 현상을... 처음엔 익스트루더 기어가 제대로 물리지 못했거나 기어-베어링간 장력 조절이 잘못되었다고 판단하고 그 쪽을 주물러 보았습니다. 이후엔 레벨링이 잘못되어 (노즐과 베드가 너무 가까워서) 압출이 안되는 것이 아닐까 생각했어요. 두가지 모두 문제가 없습니다. 가장 상정하기 싫은 마지막 문제를 고려해봐야하는 시간입니다. 노.즐.이.막.혔.다. 일단 노즐을 분해해봅니다. 먼저, 피팅의 호스를 잡아뺍니다. ...? 안빠지네요? 이땐 몰랐지만, 분해하고 보니 호스까지 용융된 필라멘트가 밀려올라오는 바람에 호스까지 히팅블럭에 붙어버린 상태였습니다. ABS 온도 240℃로 가열해주고, 피팅 자체를 스패너로 분리합니다. 노즐 전면의 접시머리 2mm 육각볼트 두개를 분해합니다. 히팅블럭이 드러납니다. 역시 2mm 육각볼트로 분해해줍니다. 노즐부근을 감싼 고무를 벗겨내주고 열 센서와 발열파츠를 분해합니다. 센서는 십자드라이버로 돌려서 풀어주면 되고, 발열파츠는 하부에 있는 무두볼트 (1.5mm)를 풀면 옆으로 분해됩니다. 센서분해 발열부 분해 방열판과 히팅블럭을 분해합니다. 납작머리 육각볼트를 풀어주고, 방열판의 무두볼트를 풀어주면 분해 완료. 하이라이트, 노즐 분해. .. 압축된 PLA의 접착력 떄문에 풀기 어려웠습니다. ...

경주 첨성대 제작

작년 8월에 제작했던 첨성대입니다. 외국 여행 후 랜드마크 모델링 파일을 찾거나 제작하여 출력하다가, 한국의 건축물도 만들어보자는 생각이 들더군요. 마침 2018년 8월에 경주 여행을 다녀왔습니다. 출처 : 나무위키 / 직접 찍은 사진엔 인물이 들어있어, 스크랩 사진으로 갈음합니다. 현존하는 세계 최초의 천문대로 알려진 첨성대는, 교과서에도 자주 소개되는 만큼 형태를 모르는 사람은 없을 것 같습니다. 헌데, 인터넷에서 찾은 대부분의 첨성대 모델링은 옆면의 곡선이 원본의 느낌이 많이 나지 않더군요. 너무 둔탁해보이거나, 반대로 너무 소주병 주둥이 같은 느낌이었습니다. 또한 비율도 실물과는 많이 달라보였습니다. 마음에 안들면? 모델링 직접 해야죠 뭐..  먼저, 첨성대의 스펙을 적은 사진을 찾아보았습니다. 구글링을 하니 바로 나오네요. 출처 :  http://yellow.kr/blog/?p=187 벽돌 개수도 360여개라네요. 하지만 벽돌 하나하나를 쌓아서모델링하기엔 매우 귀찮으므로, 전체적인 길이만 맞춰서 만들어보기로 합니다. tinker CAD에서 원기둥을 만든다음, 사각 기둥 형태의 구멍을 만들어서 옆에 세워줍니다. 합치기 해주면, 동전 옆면 만들때와 비슷한 형태가 되었네요. 축척 1:10 적용하여 높이는 30.3mm로 만들어줍니다. 이 것은 한개의 층으로 쌓아올릴겁니다.  단마다 원기둥의 지름을 조절해가며, 쌓아주었습니다. 꼭대기의 우물정# 형태는 육면체 8개로 만들어주고, 하판 역시 위의 치수를 참고하여 깔아줍니다.  실제는 내부에 모래가 가득차 있지만, 포물면과 원기둥으로 내부를 뚫어주기로 합니다. 내부를 보이도록 잘라서 출력할 모델도 아니고, 더욱 중요한 것은 출력 시간과 재료를 아끼기 위해서죠. 빠진게 하나 있죠. 창문. 3개의 평평한 육면체와 1개의 정사각기둥의 육면체를 모아주고 위에서...